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A B S T R A C T

Cross-domain recommendation (CDR) plays a critical role in alleviating the sparsity and cold-start problem and
substantially boosting the performance of recommender systems. Existing CDR methods prefer to either learn
a common preference bridge shared by all users or a personalized preference bridge tailored for each user to
transfer user preference from the source domain to the target domain. Although these methods significantly
improve the recommendation performance, there are still some limitations. First, these methods usually assume
a user only has a unique interest, while ignoring the fact that a user may interact with items with different
interest preferences. Second, they learn transformed preference representation mainly relies on the source
domain signals, while neglecting the rich information available in the target domain. To handle these issues,
in this paper, we propose a novel method named Multi-interest Meta Network with Multi-granularity Target-
guided Attention (MIMNet) for cross-domain recommendation. To be specific, we employ the capsule network
to learn user multiple interests in the source domain, which will be fed into a meta network to generate
multiple interest-level preference bridges. Then, we transfer user representations from the source domain
to the target domain based on these multi-interest bridges. In addition, we introduce both fine-grained and
coarse-grained target signals to aggregate user transformed interest-level representations by incorporating a
novel multi-granularity target-guided attention network. We conduct extensive experimental results on three
real-world CDR tasks, and the results show that our proposed approach MIMNet consistently outperforms all
baseline methods. The source code of MIMNet is released at https://github.com/marqu22/MIMNet.
1. Introduction

Recommender systems [1–4] have become indispensable in shaping
the modern user experience in a wide range of domains, deeply influ-
encing user choices in short videos [5–7], e-commerce [8,9], online
recruitment [10,11], and etc. Existing methods have been proven to
be effective when rich user–item interaction information is available.
However, in real application scenarios, some users would have few
interaction information, especially for newly joined users (cold-start
users), which significantly hinders the application of a recommender
system. To solve the problem, cross-domain recommendation (CDR) has
been proposed, which attempts to alleviate the sparsity and cold-start
issue in the target domain by exploiting knowledge from the source
domain. Learning a common bridge to transfer user preference from the
source domain to the target domain is a general CDR strategy [12,13].
For example, EMCDR [12] employs a two-phase strategy to enhance
the recommendation performance in the target domain. Specifically, it
first encodes user embeddings in the source and target domains, respec-
tively. Then, a common bridge between the source and target domains
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is learned based on overlapping users for aligning user embeddings
in the two domains. Since the number of overlapping users would be
inadequate for learning a high quality common bridge, some research
works [14–16] have been proposed to handle this issue. SSCDR [14]
applies a semi-supervised framework to learn a common bridge be-
tween different domains and capture the neighboring information of
users. TMCDR [15] employs the meta learning technique to learn a
common bridge between the source and target domains. However,
user preference usually varies from one to one, applying a common
bridge to transfer user preference would lead to inferior performance.
PTUPCDR [16] proposes to transfer user preference by using personal-
ized bridges which take users’ characteristic embeddings in the source
domain as input. CVPM [17] employs differentiated encoders to capture
users’ positive and negative preferences to construct personalized bias
terms for each user, which are then combined with a common bridge
shared among all users to achieve complementary personalized and
common transfer.
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Fig. 1. An example of a user with different interest preferences on movie styles, including Comedy, Anime, Action & Adventure and Science Fiction.
Despite the significant successes achieved by these methods, they
suffer from two limitations. First, these methods neglect the complexity
of user interests where a user may have diverse interests rather than
a unique interest. As depicted in Fig. 1, a user has different interest
preferences on movie styles, ranging from Comedy and Anime to Action
& Adventure and Science Fiction. However, the rich information of
these interest-level preferences are largely ignored by existing methods,
as they either assume all users share a common preference transference
or each user takes a specific preference transference. Although there are
a few efforts [18] trying to model users’ multiple interests, they heavily
rely on external knowledge such as item category and brand, which
may not available in real applications. Second, existing bridge-based
methods learn transformed preference representation mainly based on
information from the source domain. However, the rich information
from the target domain is not well explored to guide the learning
process. It is worth noting that several recent works [19–22] consider
signals from both source and target domains to make joint optimization
for cross-domain recommendation, while they may seriously suffer
from the sparsity issue in the target domain. Recent bridge-based
methods have achieved state-of-the-art performance due to its superior
capability to attenuate the sparsity issue. However, in these methods,
the useful information from the target domain are largely neglected.

To handle the above-mentioned issues, in this paper, we propose a
multi-interest meta network with multi-granularity target-guided atten-
tion for cross-domain recommendation, termed MIMNet. To be specific,
we first leverage the capsule network with dynamic routing to decouple
user multiple interest representations. Then, the learned representa-
tions will be fed into a multi-interest meta network to generate a multi-
interest preference bridge, which attempts to transfer user preference
from the source domain to the target domain in an interest-level man-
ner. In addition, we develop a multi-granularity target-guided attention
network, which aims to incorporate fine-grained and coarse-grained
target guidance to facilitate the aggregation of user representations
with diverse interest preferences. To guide the adaptive aggregation
process of user preference in the target domain, the fine-grained guid-
ance leverages the target item-level signal, while the coarse-grained
guidance relies on the target prototype-level signal.

We carry out extensive experiments on three real-world different
CDR tasks to evaluate the effectiveness of our proposed approach. The
results demonstrate that MIMNet is consistently superior to existing
state-of-the-art baselines. The relative performance improvements of
MIMNet over the best-performing baseline, REMIT [18], on Task1 are
14.45%, 16.36%, 12.86% when 𝛽 equals to 20%, 50%, 80% in terms
of the MAE metric.

Similar performance improvements can be observed on the other
two Tasks. The main contributions of our work are summarized as:

• We propose a novel multi-interest meta network to decouple
users’ multiple interests, and generating multi-interest bridges to
transfer user embeddings from the source domain to the target
domain.
2 
• By exploring both fine-grained and coarse-grained target signals,
we develop a multi-granularity target-guided attention network to
adaptively guide the aggregation process of user representations
with different interest preferences in the target domain.

• We conduct extensive experiments on three CDR tasks to validate
the effectiveness of MIMNet. Experimental results show that our
proposed method outperforms state-of-the-art baseline methods.

2. Related work

Cross-domain recommendation (CDR) attempts to alleviate the data
sparsity and cold-start issue in the recommendation system by transfer-
ring user preference from the source domain to the target domain. It
has substantially boosted the performance of recommendation and at-
tracted the increasing attention of researchers. In early years, CMF [23]
conducts cross-domain information transfer by applying matrix fac-
torization across multiple domains to mitigate the problem of data
sparsity in the target domain. CST [24] utilizes coordinate systems
for knowledge transfer between the source and target domains based
on a principled matrix-based transfer learning framework. Recently,
some researchers leverage deep learning-based CDR methods to model
the collaborative relationships between different domains. CoNet [25]
assumes the hidden layers between two domains are connected, and
proposes to apply dual knowledge transfer instead of one direction
knowledge transfer. MINDTL [26] facilitates the modeling of user
preference in the target domain by extracting and transferring rating
patterns from the source domain. DDTCDR [27] develops a latent
orthogonal mapping to preserve relations between users among differ-
ent domains, and transfers knowledge between these domains in an
iterative way.

Other researchers attempt to learn a common bridge to transfer
user preference between the two domains. EMCDR [12] models user
preference in the source and target domains respectively, and then
learns a common bridge between the two domains based on the over-
lapping users. DCDCSR [13] extends EMCDR by employing MF to learn
user and item embeddings, and incorporates the fine-grained sparsity
degrees of users and items to combine the learned embeddings. Due to
the limited number of overlapping users, the two methods may result
in unsatisfying performance. To handle this issue, SSCDR [14] em-
ploys a semi-supervised framework to learn a common bridge between
different domains and capture the neighboring information of users.
TMCDR [15] applies the meta learning technique to handle the above-
mentioned issue based on its strong generalization ability. It develops a
transfer-meta framework for CDR by learning a common bridge, which
consists of two stages, i.e., a transfer stage and a meta stage. The former
stage trains a source model and a target model on the source and target
domains respectively, and the latter stage transforms user preference
from the source domain to the target domain based on the common
bridge.

Since the preference transition patterns of different users between
the source and target domains may vary considerably, PTUPCDR [16]
utilizes a personalized bridge rather than a single common bridge to
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transfer each user’s specific preference. It generates a personalized
bridge for each user by taking their characteristic representations in
he source domain as input of the bridge. CVPM [17] simultaneously

considers cross-domain common transfer patterns and user-specific per-
sonalized transfer patterns, and decouples users’ positive and negative
preferences in the construction of personalized bias terms. REMIT [18]
roposes to extract users’ multiple interests in the source domain based
n different meta-path based aggregations, and utilizes a reinforcement
earning framework to aggregate transformed interests. The main dif-
erence between our method and REMIT are three aspects. First, REMIT
elies on external knowledge such as item category and brand, which
ay not available in real applications, to construct different meta-
aths. In contrast, our method only utilizes user interaction data which

is more efficient and practical. Second, REMIT learns transformed
preference representation by mainly leveraging the information in the
source domain while neglecting the rich information from the target
omain. However, our method proposes to introduce informative target
ignal to guide the aggregation of user transformed representations.
hird, REMIT transfers user preference based on a single granularity
hich overlooks the inherent multiple granularity property of user pref-

rence. Different from REMIT, our method develops both fine-grained
nd coarse-grained target guidance to facilitate the multi-granularity
ransformation of user diverse preferences.

3. Problem formulation

In the task of cross-domain recommendation (CDR), there are two
domains, i.e., a source domain 𝑠 and a target domain 𝑡. In each
domain, we have a user set  = {𝑢1, 𝑢2,… , 𝑢𝑚}, an item set  =
{𝑣1, 𝑣2,… , 𝑣𝑛} and a rating matrix , where 𝑟𝑖𝑗 ∈  indicates there is
an interaction between user 𝑢𝑖 and item 𝑣𝑗 , 𝑚 and 𝑛 are the number
of users and items, respectively. We use  𝑠, 𝑠, and 𝑠 to denote
the user set, the item set, and the rating matrix in the source domain.
Similarly, we use  𝑡,  𝑡 and 𝑡 for the target domain. The overlapping
users between the source and target domains are defined as  𝑜 =
 𝑠 ∩  𝑡. It is worth noting that there are no shared items between
the two domains, i.e., 𝑠 ∩  𝑡 = ∅. The cold-start users denoted by
 𝑐 = {𝑢|𝑢 ∈  𝑠 ∧ 𝑢 ∉  𝑡} are those who have interactions with items
in the source domain while having no interactions with items in the
target domain. For each user 𝑢𝑠𝑖 ∈  𝑠 in the source domain, we denote
𝑆𝑢𝑖 = {𝑣𝑠1, 𝑣𝑠2 … , 𝑣𝑠𝑛𝑖} as her corresponding interacted items, where 𝑛𝑖
and 𝑣𝑠𝑗 are the number of interacted items and the 𝑗th interacted item
of 𝑢𝑠𝑖 . We can transform the users and items into dense vectors, also
called embeddings, with the latent factor model [28]. In this paper,
we use 𝐮∗𝑖 ∈ R𝑑 and 𝐯∗𝑗 ∈ R𝑑 to denote the embeddings of the user 𝑢∗𝑖
and the item 𝑣∗𝑗 respectively, where 𝑑 denotes the dimensionality of the
embedding and ∗∈ {𝑠, 𝑡} represents the label of domain. Specifically, we
use 𝐒𝑢𝑖 = {𝐯𝑠1, 𝐯𝑠2,… , 𝐯𝑠𝑛𝑖} to denote the embeddings of interacted items
of 𝑢𝑠𝑖 in the source domain, where 𝐯𝑠𝑗 ∈ R𝑑 is the embedding of the
interacted item 𝑣𝑠𝑗 . Additionally, we apply a clustering algorithm to all
items in the target domain, and treat the centroid embedding of each
cluster as the prototype for the items within that cluster. For an item 𝑣𝑡𝑗 ,
its corresponding prototype is denoted as 𝐩𝑡𝑗 ∈ R𝑑 . The goal of CDR is
to improve the performance of recommendations in the target domain
by leveraging rich information from the source domain.

4. Our proposed model

The architecture of our proposed MIMNet model is illustrated in
Fig. 2, which contains three components, i.e., interest representation
learning, multi-interest meta network, and multi-granularity target-
uided attention network.
3 
4.1. Interest representation learning

In this sub-section, we attempt to learn the multiple interest repre-
sentations of a user based on her sequential interaction items. Inspired
by [29,30], we utilize dynamic routing in capsule network to extract
users’ multiple interests. To make this paper self-contained, we briefly
evisit the key basics of dynamic routing. In dynamic routing, there
re two layers of capsules, including low-level capsules and high-
evel capsules. The two layers of capsules are updated in an iterative
ay, and the final high-level capsules are considered as user extracted

nterests.
Given the embeddings of sequential interaction items for a user 𝑢

in source domain, i.e., 𝐒𝑢 = {𝐯𝑠1, 𝐯𝑠2,… , 𝐯𝑠𝑛}. Our goal is to extract 𝐾
nterests 𝐞𝑘 ∈ Rℎ, 𝑘 ∈ {1,… , 𝐾}. In each iterative process of dynamic
outing, we first compute the routing logit score 𝑏𝑗 𝑘 as:

𝑏𝑗 𝑘 = (𝐞𝑘)𝑇𝐌 𝐯𝑠𝑗 , (1)

where the 𝐌 ∈ Rℎ×𝑑 denotes the transformation matrix to be learned.
ith the routing logit scores calculated, the candidate vector 𝐳𝑘 for the

th high-level capsule is computed as a weighted sum of all low-level
capsules. The calculation of 𝐳𝑘 is as follows:

𝐳𝑘 =
𝑛
∑

𝑗=1
𝑤𝑗 𝑘𝐌 𝐯𝑠𝑗 , (2)

𝑤𝑗 𝑘 =
𝑒𝑥𝑝(𝑏𝑗 𝑘)

∑𝐾
𝑚=1 𝑒𝑥𝑝(𝑏𝑗 𝑚)

, (3)

where 𝑤𝑗 𝑘 denotes the contribution weight score of the 𝑗th low-level
capsule to the 𝑘th high-level capsule.

Then, a non-linear ‘‘squash’’ function is used to ensure high-level
capsule vectors are in an appropriate range:

𝐞𝑘 = squash(𝐳𝑘) =
‖

‖

𝐳𝑘‖‖
2

1 + ‖

‖

𝐳𝑘‖‖
2

𝐳𝑘
‖

‖

𝐳𝑘‖‖
, (4)

where 𝐞𝑘 is the 𝑘th interest we want to extract from the sequential
interaction items in the source domain. For each user 𝑢𝑖, 𝐾 interest
vectors can be extracted from the interaction sequence in the source
domain through the dynamic routing method. We combine these 𝐾
interest vectors into a matrix 𝐄𝑢𝑖 = [𝐞1,… , 𝐞𝐾 ] ∈ R𝐾×𝑑 to serve the
downstream task.

4.2. Multi-interest meta network

The core of cross-domain recommendation task is to transfer user
preference from the source domain to the target domain. To the end,
xisting methods either learn a common preference bridge shared by

all users [31] or leverage a personalized preference bridge tailored
for each user [16]. Although these methods have achieved promising
performance, they neglect the fact that a user may interact with items
with multiple interest preferences. To solve this issue, we resort to
leverage interest-level preference bridges. Specifically, we first employ
a meta network that takes the multiple interests 𝐄𝑢𝑖 of a user in the
source domain as input to generate multi-interest bridges, and then we
transfer her embeddings from the source domain to the target domain
based on the multi-interest bridges. Formally, we have:

𝐖𝑢𝑖 = 𝑔(𝐄𝑢𝑖 ;𝜙), (5)

where 𝑔(⋅) is a two layer feed-forward neural network, 𝜙 are learnable
parameters, and 𝐖𝑢𝑖 = [𝐰1,𝑢𝑖 ,… ,𝐰𝐾 ,𝑢𝑖 ] ∈ R𝐾×𝑑2 with 𝐰𝑘,𝑢𝑖 ∈ R𝑑2 be
the generated parameter vector for the 𝑘th interest bridge. We reshape
𝐰𝑘,𝑢𝑖 into a matrix 𝐰̃𝑘,𝑢𝑖 ∈ R𝑑×𝑑 , and formulate the 𝑘th interest bridge
for user 𝑢𝑖 as:

𝑓 (⋅; 𝐰̃𝑘,𝑢𝑖 ), (6)

where 𝑓 (⋅) is a linear layer. With the learned multi-interest bridges for
𝑢𝑖, we can obtain her corresponding transformed representations in the
arget domain. Formally, we have:
𝑡 𝑠
𝐮̄𝑘,𝑖 = 𝑓 (𝐮𝑖 ;𝐰𝑘,𝑢𝑖 ), (7)
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Fig. 2. Overall architecture of our proposed MIMNet model, which consists of three components: (1) Interest Representation Learning, which utilizes capsule networks to decouple
multiple user interest preferences from interaction items; (2) Multi-Interest Meta Network, which uses a meta-network to transform multiple interests into multiple interest bridges; (3)
Multi-Granularity Target-Guided Attention Network, which employs a prototype generator to identify corresponding prototypes for each candidate item and constructs target-guided
attention modules at different granularities to mine guidance signals at both item and prototype levels.
where 𝐮𝑠𝑖 ∈ R𝑑 denotes the embedding of user 𝑢𝑖 in the source domain,
and 𝐮̄𝑡𝑘,𝑖 ∈ R𝑑 denotes the transformed embedding of user 𝑢𝑖 in the
target domain based on the 𝑘th interest bridge. As there are 𝐾 trans-
formed embeddings for 𝑢𝑖, i.e., {𝐮̄𝑡𝑘,𝑖}

𝐾
𝑘=1, we combine these transformed

embeddings into a matrix 𝐔̄𝑡
𝑖 = [𝐮̄𝑡1,𝑖,… , 𝐮̄𝑡𝐾 ,𝑖] ∈ R𝑑×𝐾 , which will be

utilized to obtain the final representation for 𝑢𝑖 in the target domain.

4.3. Multi-granularity target-guided attention network

Since the transformed embeddings 𝐔̄𝑡
𝑖 of 𝑢𝑖 solely rely on infor-

mation from the perspective of source domain, while the informative
signals from the target domain are ignored. As information from the
target domain also plays a critical role in guiding the transfer process,
we further propose to take into account the target signal to learn
better transformed user representation in the target domain. Specif-
ically, we develop a novel multi-granularity target-guided attention
network which leverages both fine-grained and coarse-grained target
signals to aggregate a user’s different interest preferences. It is worth
noting that both fine- and coarse-grained target signals are utilized
to leverage the rich information of the target domain. The former
focuses on aggregating the multiple interest preferences from an item-
level perspective while the latter conducts aggregation of the multiple
interest preferences from a prototype-level perspective.

4.3.1. Fine-grained target-guided attention
In this module, we attempt to aggregate the learned multiple in-

terest preferences 𝑈̄ 𝑡
𝑖 into a transformed user embedding 𝑢̂𝑡𝑖 with the

guidance of fine-grained target signals, i.e., the information from each
candidate item 𝑣𝑡𝑗 in the target domain. Let 𝐯𝑡𝑗 be the corresponding
embedding of 𝑣𝑡𝑗 . We employ attention mechanism to aggregate the
multiple interest preferences 𝑈̄ 𝑡

𝑖 , where we take 𝐯𝑡𝑗 as the query, and
𝑈̄ 𝑡
𝑖 as both keys and values. The fine-grained target-guided aggregation

is defined as follows:

𝐮̂𝑡𝑖 = 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝐯𝑡𝑗 , 𝐔̄
𝑡
𝑖, 𝐔̄

𝑡
𝑖) (8)

where 𝐮̂𝑡𝑖 ∈ R𝑑 is the user’s transformed embedding in the target domain
from a fine-grained perspective.

4.3.2. Coarse-grained target-guided attention
To improve the generalization ability of our model, we propose to

extract the prototype of each candidate item in the target domain and
leverage it a coarse signal to aggregate the learned multiple interest
4 
preferences 𝑈̄ 𝑡
𝑖 . To be specific, we employ K-Means1 to cluster items in

the target domain and utilize the center of each cluster as the prototype
of items in the cluster. For the prototype 𝐩𝑡𝑗 ∈ R𝑑 corresponding to 𝑣𝑡𝑗 ,
we define the process of the coarse-grained target-guided aggregation
as follows:

𝐮̌𝑡𝑖 = 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝐩𝑡𝑗 , 𝐔̄
𝑡
𝑖, 𝐔̄

𝑡
𝑖), (9)

where 𝐮̌𝑡𝑖 ∈ R𝑑 denotes the user’s embeddings generated by the proto-
type of the candidate item guide.

After we obtain 𝑢̂𝑡𝑖 and 𝑢̌𝑡𝑖, we introduce an adaptive fusion module
to generate the final user’s embeddings 𝑢̃𝑡𝑖 in the target domain, which
is defined as:

𝐮̃𝑡𝑖 = 𝛼 ⋅ 𝐮̂𝑡𝑖 + (1 − 𝛼) ⋅ 𝐮̌𝑡𝑖, (10)

𝛼 = 𝜎
(

𝑀 𝐿𝑃
(

[𝐯𝑡𝑗 ;𝐩
𝑡
𝑗 ]
))

, (11)

where [; ] denotes the concatenation operator and 𝜎 is a 𝑠𝑖𝑔 𝑚𝑜𝑖𝑑(⋅)
function.

4.4. Prediction and model optimization

4.4.1. Prediction
Given a candidate item 𝑣𝑗 , we first utilize the target-guided adaptive

fusion module to derive the user’s embedding 𝑢̃𝑡. Then, we apply the
inner product to calculate the user 𝑢𝑖 ratings for the candidate item 𝑣𝑗
as follows:

𝑦̂𝑖𝑗 = (𝑢̃𝑡𝑖)𝑇 𝑣𝑗 , (12)

where 𝑦̂𝑖𝑗 denotes predicted rating of user 𝑢𝑖 for candidate item 𝑣𝑗 .

4.4.2. Model optimization
The overall model consists of two stages of training, including a

pre-training stage and a cross-domain training stage.
Pre-training stage: The goal of the pre-training step is to learn

embeddings of users and items in the source domain and target domain,
respectively. As interactions of the overlapping users in the target
domain are not visible in this stage, we use The loss function in the
pre-training stage is formulated as:

min
𝑢,𝑣

1
||

∑

𝑟𝑖𝑗∈
(𝑟𝑖𝑗 − 𝑢𝑇𝑖 𝑣𝑗 )

2. (13)

1 https://github.com/facebookresearch/faiss.

https://github.com/facebookresearch/faiss
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Table 1
The data statistics and task definitions, where Overlap denotes overlapping users in both domains.

CDR tasks Domain Item User Rating

Source Target Source Target Overlap (Density) Source Target Source Target

Task1 Movie Music 50,052 64,443 18,031 (24.96%) 123,960 75,258 1,697,533 1,097,592
Task2 Book Movie 367,982 50,052 37,388 (30.16%) 603,668 123,960 8,898,041 1,697,533
Task3 Book Music 367,982 64,443 16,738 (22.24%) 603,668 75,258 8,898,041 1,097,592
(
a

m
c

Cross-domain training stage: In the cross-domain recommenda-
ion stage, we employ the task-oriented training strategy, which utilizes
he final rates as the optimization goal rather than leverages user
mbeddings in the target domain for optimization. Specifically, the loss
unction in the cross-domain training stage is formulated as:

min 1
|𝑡

𝑜|

∑

𝑟𝑖𝑗∈𝑡
𝑜

(𝑟𝑖𝑗 − 𝑦̂𝑖𝑗 )2. (14)

5. Experiments

In this section, we first conduct extensive experiments on three
cross-domain tasks under different cold-start settings to evaluate the
performance of our proposed method. Then, we analyze the effect
f using different base models for our method and investigate the

effectiveness of the different numbers of interests on our model per-
formance. Finally, we analyze the magnitude of the contribution of
different modules in the model to the overall effect of the model by
using ablation experiments and visualized the analysis.

5.1. Experimental settings

5.1.1. Datasets
Amazon review dataset2 is a real-world public dataset which has

een widely used in the task of CDR [14,16,31]. Following most
xisting works, we utilize the Amazon dataset, in which users rated

items in a range of 1–5. Specifically, the dataset has 24 categories, in
which 3 popular categories, i.e., movies_and_tv (Movie), cds_and_vinyl
(Music), and books (Book), are selected for the experiments. Table 1
shows the detailed statistics of the dataset.

5.1.2. Baselines
To evaluate the performance of our proposed approach, we choose

he following baselines for comparison.

• TGT [16]. TGT is a method which is trained by only leveraging
information from the target domain.

• CMF [23]. CMF is an extended version of MF, which enables
cross-domain recommendation for users by sharing an embed-
dings for the same user in the source domain and target domain.

• EMCDR [12]. EMCDR is a widely used cross-domain recom-
mendation method. It applies a common bridge to transfer user
preference from the source domain to the target domain. Specif-
ically, it first utilizes matrix factorization (MF) to learn user and
item embeddings on each domain, and then adopts a common
bridge to capture the underlying relationship between the two
domains.

• DCDCSR [13]. Similar to EMCDR, this method also employs
MF to learn user and item embeddings. However, it combines
the learned embeddings by introducing the fine-grained sparsity
degrees of users and items which can utilize more rating data in
both domains.

2 http://jmcauley.ucsd.edu/data/amazon/.
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• SSCDR [14]. It first models user–user similarities and user–item
interactions, and then learns a common bridge between differ-
ent domains with a semi-supervised framework. To infer the
latent representations of the cold-start users, it further takes into
account the neighbors of these users.

• PTUPCDR [16]. Compared with previous works, PUTPCDR at-
tempts to learn a personalized bridge rather than a common
bridge to transfer user preference. To generate the personalized
bridge, it learns a meta network based on users’ characteristics in
the source domain.

• REMIT [18]. This method employs a heterogeneous information
network and different meta-path based aggregations to extract
user interests in the source domain. A reinforcement learning-
based strategy is then used to transfer and aggregate users’ inter-
ests to the target domain. Different from existing methods, REMIT
relies on additional knowledge such as categories and brands of
items.

• CVPM [17]. It employs a discriminative strategy to capture users’
positive and negative preferences, thereby learning a personalized
bias term for each user. This bias term is then integrated with
traditional common bridges to reduce dependency on overlapping
users and enhance the completeness and personalization of user
interest transfer across different domains.

5.1.3. Evaluation metrics
In the experiments, we adopt two metrics: Mean absolute Error

MAE) and Root Square Error (RMSE) to measure the performance of
ll methods following [12,16], which are widely used in the task of

CDR.

5.1.4. Implementation details
We set the learning rate for the Adam optimizer to 0.01, the size of

mini-batch to 512, and the embedding dimension 𝑑 to 10. The iteration
number of dynamic route is fixed to 3, and the prototype number
𝐶 in the target domain is set to 100. To evaluate the performance of
our proposed method, we randomly select some overlapping users and
remove their ratings in the target domain, and regard these users as test
users. The remaining overlapping users are utilized for training multi-
interest bridges. Similar to [16,18], we set the ratio of test users 𝛽 to
20%, 50%, 80% of all overlapping users, respectively. For each task,
the averaged results over five random runs are reported.

5.2. Performance comparison

5.2.1. Overall
In this section, we analyze the performance of our proposed MIMNet

ethod in different cold-start scenarios, and the overall results of all
omparing methods are shown in Table 2. We have the following key

observations:

• The performance of TGT is the worst among all baseline meth-
ods. This is because TGT solely relies on information from the
target domain to conduct the recommendation while ignoring the
rich information from the source domain. CMF demonstrates a
superior performance as compared with TGT since it can leverage
information from both source and target domains.

http://jmcauley.ucsd.edu/data/amazon/
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Table 2
The overall performance in different cold-start scenarios for three CDR tasks. The best and second best scores are in bold and underlined, respectively. We report the reimplemented
esults of EMCDR, PTUPCDR, and CVPM for comparison, as they outperform those reported in [16] and [17] overall. (Note that a lower MAE and RMSE value indicates a better
odel performance).

𝛽 Metric TGTa CMFa EMCDR DCDCSRa SSCDRa PTUPCDR REMITb CVPM MIMNet Improv.

Task1

20% MAE 4.4803 1.5209 1.1141 1.4918 1.3017 1.0478 0.9393 1.0307 0.8027 14.45%
RMSE 5.1580 2.0158 1.3881 1.9210 1.6579 1.3693 1.2709 1.3170 1.1509 09.44%

50% MAE 4.4989 1.6893 1.2780 1.8144 1.3762 1.1340 1.0437 1.1251 0.8729 16.36%
RMSE 5.1736 2.2271 1.5738 2.3439 1.7477 1.4982 1.4580 1.4362 1.2244 16.02%

80% MAE 4.5020 2.4186 1.7345 2.7194 1.5046 1.3786 1.2181 1.2040 1.0614 11.84%
RMSE 5.1891 3.0936 2.0977 3.3065 1.9229 1.8883 1.6601 1.5525 1.4721 05.18%

Task2

20% MAE 4.1831 1.3632 0.9492 1.3971 1.2390 1.0093 0.8759 1.0023 0.8718 00.47%
RMSE 4.7536 1.7918 1.1887 1.7346 1.6526 1.2947 1.1650 1.2887 1.1430 01.89%

50% MAE 4.2288 1.5813 1.0064 1.6731 1.2137 1.0428 0.9172 1.0454 0.9025 01.60%
RMSE 4.7920 2.0886 1.2558 2.0551 1.5602 1.3519 1.2379 1.3326 1.1983 03.20%

80% MAE 4.2123 2.1577 1.1330 2.3618 1.3172 1.1149 1.0055 1.1013 0.9710 03.43%
RMSE 4.8149 2.6777 1.4388 2.7702 1.7024 1.4756 1.3772 1.3872 1.2910 06.26%

Task3

20% MAE 4.4873 1.8284 1.3302 1.8411 1.5414 1.1241 1.3749 1.1345 0.8107 27.88%
RMSE 5.1672 2.3829 1.5923 2.2955 1.9283 1.4728 1.9940 1.4059 1.1711 16.70%

50% MAE 4.5073 2.1282 1.6004 2.1736 1.4739 1.2566 1.4401 1.2074 0.9348 22.58%
RMSE 5.1727 2.7275 1.9130 2.6771 1.8441 1.6939 2.0495 1.5277 1.3009 14.85%

80% MAE 4.5204 3.0130 1.9968 3.1405 1.6414 1.5122 1.6396 1.5442 1.1167 26.15%
RMSE 5.2308 3.6948 2.3634 3.5842 2.1403 2.0825 2.2653 1.9022 1.5178 20.21%

a Results are taken from [16].
b Results are taken from [18].
a

• Although CMF achieves a better performance, it simply combines
information of different domains into a single domain which
inevitably ignores the potential domain drift. DCDCSR, SSCDR,
and EMCDR outperform CMF as they further capture the potential
domain drift by introducing a common bridge to transfer user
embeddings from the source domain into the target domain.

• By comparing PTUPCDR with these common bridge based meth-
ods, we can observe a considerable performance improvement
brought by learning personalized bridges for each user. Addi-
tionally, CVPM, which simultaneously considers common and
user-specific preference transfer patterns, demonstrates a supe-
rior performance to PTUPCDR. Among baseline methods, REMIT
obtains the best performance since it employs multiple person-
alized bridges together with a RL-based bridge sector to select
transformed interests.

• Our proposed method MIMNet yields the best performance on all
three tasks under all different cold-start settings. For example,
the relative performance improvements with 𝛽 = 20% of MIMNet
over the best performing baseline method REMIT on Task1 in
terms of MAE and RMSE are 14.45% and 9.44%, respectively.
The main reason are that MIMNet can extract better user multiple
interests based on the capsule network and the meta network. In
addition, MIMNet incorporates a multi-granularity target-guided
aggregation module to effectively aggregate the learned multiple
interests. Moreover, we also observe that the performance on
Task1 and Task3 are considerably larger than that on Task 2.
This may be attributed to that the density of overlapping users
on Task1 and Task3 is smaller than that on Task2. For example,
the density of overlapping users on Task1 and Task3 are 24.96%
and 22.24%, respectively. While the density of overlapping users
on Task2 is 30.16%. This result further verifies the superior
effectiveness of our proposed approach in alleviating the sparsity
issue.

5.2.2. Generalization experiments
Most of the previous CDR methods [12,13] have predominantly

focused on the design of the bridge for cross-domain mapping, utiliz-
ing relatively simple non-neural model (i.e., MF) as the base models.
However, considering the diversity of recommendation models, this
simplification raises concerns about the generalization capability of
6 
bridge-based CDR methods. Following [16], we introduce two addi-
tional neural network models, GMF [32] and YouTube DNN [33],
as foundational domain models to validate the effectiveness of our
proposed MIMNet method. We evaluate the performance of MIMNet
gainst three bridge-based approaches, namely EMCDR, PTUPCDR, and

CVPM, upon all the three base models. In addition, we also introduce
the global average rating (GAR) as a comparing method. It is worth
noting that we neglect the baseline REMIT as it relies on additional
information such as item categories and brand names. The experimental
results are shown in Fig. 3, and we can have the following observations:

• By replacing the base model MF with GMF, all three methods
have shown considerable performance improvements. In addition,
when we employ YouTube DNN as the base model, it will further
boost the performance of all three methods.

• When we adopt MF as the base model, GAR can outperform some
MF-based baseline methods. This is because the MF is a simple
base model. While the base model become more strong, such as
GMF or YouTube DNN, we can observe a superior performance of
these baseline methods compared to GAR. It is worth noting that
on all base models, our proposed approach MIMNet is consistently
better than that of GAR.

• PTUPCDR generally outperforms EMCDR across the three differ-
ent base models, indicating the superiority of using the personal-
ized bridge over the common bridge to transfer user preference.
CVPM, which simultaneously considers both common and per-
sonalized preference transfer patterns, demonstrates comparative
performance across three different base models.

• Additionally, it can be observed that our proposed method MIM-
Net consistently exhibits the best performance across all base
models, which reflects the generalization capability of MIMNet.

5.3. Model analysis

5.3.1. Ablation study
To verify the effectiveness of the main components in MIMNet, we

conduct an additional ablation study in this section. Specifically, we
consider the following variants of MIMNet for experiments:

• MIMNet w/o multi: we utilize a single-interest meta network in-
stead of a multi-interest meta network to transfer user preference.
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Table 3
Ablation study of MIMNet, in terms of MAE.

Methods Task1 Task2 Task3

20% 50% 80% 20% 50% 80% 20% 50% 80%

MIMNet 0.8027 0.8729 1.0614 0.8718 0.9025 0.9710 0.8107 0.9348 1.1167

-w/o multi 0.8402 0.9773 1.3399 0.8852 0.9145 1.0298 0.8844 1.1490 1.4744
-w/o target 0.9828 1.0977 1.3956 0.9139 0.9517 1.0515 0.9995 1.1820 1.4770
-w/o proto 0.9531 1.0471 1.2648 0.9107 0.9448 1.0231 0.9648 1.0919 1.2987
-w/o adapt 0.9378 1.0170 1.1985 0.9080 0.9398 1.0049 0.9455 1.0503 1.2283
Fig. 3. Performance comparison by applying GAR, EMCDR, PTUPCDR, CVPM and MIMNet upon three base models MF, GMF and YouTube DNN with 𝛽 = 20%, in terms of MAE.
Fig. 4. Impact of different interaction sparsity degrees in the source domain on model performance with 𝛽 = 20%, in terms of MAE.
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• MIMNet w/o target : we remove the fine-grained target-guided
aggregation module, where the fine-grained signal based on each
candidate items will be ignored.

• MIMNet w/o proto: we remove the coarse-grained target-guided
aggregation module, where the coarse-grained signal based on the
prototypes of each candidate item will be overlooked.

• MIMNet w/o adapt : we replace the adaptive gating fusion mod-
ule with a mean-pooling.

As shown in Table 3, our proposed method MIMNet obtains the
best performance compared to other variants. Specifically, replacing
he multiple interests with only a single interest leads to a signifi-
ant performance degradation. This experimental result illustrates that

by decoupling multiple interests within user interaction sequences in
source domain, a more enriched representation of user preference
can be obtained compared to modeling methods based on a single
interest. Additionally, the fine-grained signal based on each candidate
item in the target domain is beneficial for guiding the aggregation
process of multiple transformed interest representations. Moreover,
discarding the coarse-grained target-guided aggregation module results
in a considerable performance decay, indicating the necessity to in-
troducing coarse-grained guided signals from the target domain. At
last, adaptively fusing the fine-grained and coarse-grained transformed
embeddings of a user will obtain better performance as compared to
the strategy of applying the mean-pooling.
7 
5.3.2. Performance with different interaction sparsity degrees
To investigate the performance of our proposed model under differ-

nt interaction sparsity degrees, we group users in the source domain
nto four categories, i.e., (0,5], [6,10], [11,15], [16,20]. Fig. 4 il-

lustrates the performance comparison between our proposed method
(i.e., MIMNet) and three competitive baseline methods (i.e., EMCDR,
PTUPCDR and CVPM). We observe that our proposed method MIMNet
onsistently outperforms the three baseline methods across all interac-

tion sparsity degrees, which reveals the robustness of our model under
different interaction sparsity degrees. In addition, different baselines
have their own performance advantages in different tasks, e.g., EMCDR
utperforms PTUPCDR in Task1 and Task3, while it is inferior to
TUPCDR in Task2. This result is attributed to that Task2 have rela-
ively larger number of overlapping users as compared to the other two
asks. CVPM outperforms PTUPCDR as it simultaneously leverages both
ommon and personalized bridges to capture global user preference
s well as personalized user preference. In contract, PTUPCDR only
akes the personalized user preference into account. In contrast, our
odel performs better than both EMCDR, PTUPCDR and CVPM in all

asks, which indicates the superiority of MIMNet among different task
cenarios. Moreover, the results also show that the performance of

our method improves gradually when the number of user interactions
increases. This reflects that our model can effectively capture user
preference when more interaction behaviors are available.
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Fig. 5. Impact of the interest number 𝐾 with 𝛽 = 20% on performance, in terms of MAE.
Fig. 6. Impact of the interest number 𝐾 with 𝛽 = 20% on inference time cost.
Fig. 7. Impact of the prototype number 𝐶 with 𝛽 = 20% on performance, in terms of MAE.
a
m

l

5.3.3. Impact of interest number 𝐾
We investigate how the number of interests, denoted as 𝐾, affects

he performance and inference efficiency of MIMNet. Specifically, we
vary the interest number from 1 to 16 with a step size of 3. The
esults are presented in Figs. 5 and 6, respectively. On the Task1, we

can observe that the performance of MIMNet rises up first with the
increment of 𝐾, and reaches a peak when 𝐾 = 7. The performance
keeps stable until 𝐾 = 13 and then it starts to decline if 𝐾 becomes
larger. Similar trends can also be observed on Task2 and Task3. This
results demonstrate that our proposed model prefer a relative large
nterest number, which means employing multiple interest bridges to
ransfer user preference will significantly boost model performance

compared to adopting a single interest bridge. Moreover, a larger 𝐾
facilitates the extraction of effective user preference from different
perspectives, leading to a more precise user modeling. However, a
too high value of 𝐾 may introduce unnecessary interests, potentially
degrading the performance of our model. Based on Fig. 6, it can be
bserved that increasing the interest number does not significantly
nfluence the inference time cost of the model.

5.3.4. Impact of prototype number 𝐶
To investigate the impact of the prototype number 𝐶 on the model

performance and clustering time cost, we select 𝐶 from {10, 50, 100,
500, 1000, 10 000} and the results are shown in Figs. 7 and 8, re-
pectively. From Fig. 7, we can observe that on Task1 the model
erformance gradually improves when the prototype number 𝐶 in-
reases and reaches a peak when 𝐶 = 50. The model performance
ecomes relatively stable if we continue to increase 𝐶 until 𝐶 = 500.
fter that, it starts to decline. We can observe a similar trend on Task2.
 p

8 
While on Task3, the highest performance is obtained when 𝐶 = 100,
and it shows a downward trend when 𝐶 increases. Fig. 8 reveals that
 larger 𝐶 will lead to higher clustering time, and we fix 𝐶 at 100 to
ake a balance between the performance and cost of clustering time.

5.3.5. Visualization of multiple interest weight distributions
To verify the effectiveness of the learned multiple user interests,

we visualize the weight distribution of different interests extracted via
the capsule network. To simplify the analysis, we only extract three
interests for a sampled user, whose interacted items together their
corresponding categories are ‘‘Nuns on the Run (Comedy), The Ghost of
Frankenstein (Horror), One In The Chamber (Action & Adventure), The
Heiress (Drama), Mr Palfrey of Westminster (Drama), Homicide Life on
the Street (A&E Home Video), .Hack//SIGN (Animation), Sports Night
(Comedy) and The Last Godfather (Comedy)’’. Fig. 9 illustrates the
earned weight distribution of each item along these interests, where

each row corresponds an interest and each column corresponds an
interacted item. We can observe that the items with same or close
categories will have similar interest weight distribution. For example,
the first, eighth and ninth items which belong to the same category
(i.e., ‘‘Comedy’’), all assign most of their weights on the interest-1.
Similar phenomenon can also be observed on the second and third
items which have close categories (e.g., ‘‘Horror’’ and ‘‘Action & Ad-
venture’’). The results indicate that our proposed model can effectively
learn expressive and decoupled multiple interests for a user, which
subsequently benefits for guiding the transfer process.

5.3.6. Convergence study
We conduct experiments to compare the convergence speed of our

roposed model MIMNet with three baselines, i.e., EMCDR, PTUPCDR
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Fig. 8. Impact of the prototype number 𝐶 with 𝛽 = 20% on clustering time cost.
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Fig. 9. Visualization of multiple interest weight distributions of a user in the Task2
hen 𝛽 = 20%.

and CVPM. Fig. 10 shows the convergence speed of different models
on all three tasks with 𝛽 = 20%. We observe that the personal-
ized bridge-based model PTUPCDR converges faster than the common
bridge-based model EMCDR, and it also consistently yields better per-
formance than EMCDR at each epoch. The results demonstrate the
superiority of learning a specific bridge function for each user to
transfer her preference. CVPM, which integrates a common mapping
bridge with personalized preference terms, exhibits similar convergence
performance to PTUPCDR. In addition, among all three comparing
models, our proposed model demonstrates the best convergence speed.
It requires only 10 epochs to achieve the best performance, while the
three baselines generally take around 20 epochs to converge. Moreover,
the performance of MIMNet is consistently better than that of the three
baselines at each epoch. The main reason is that MIMNet facilitates
the transfer of user preference in a more fine-grained manner, which
leverages multi-interest bridges to transfer user embeddings from the
source domain to the target domain.

5.3.7. Case study
To further illustrate why our proposed method outperforms the

state-of-the-art baselines, we present a case study of a real user from
ask2 in Fig. 11. We can observe that for the two items (i.e., Low Impact
tep and The Gravedancers) interacted by the user in the target domain
i.e., Movie), both EMCDR and PTUPCDR make incorrect predictions.
n contrast, our proposed method MIMNet predicts the same ratings as
he real ratings of the two items, respectively. The result is attributed to
hat the two baselines EMCDR and PTUPCDR both transfer user prefer-

ence from the source domain to the target domain in a coarse-grained
manner, while ignoring the fine-grained interest-level user preference.
To be specific, in the source domain (i.e., Book), the user interacts with
ive items, including 50 Delicious and Nutritious Snacks (Healthy Diet),
Vegan Baking Classics (Healthy Diet), Without You (Thrillers & Suspense),
Overcoming Overeating (Fitness & Dieting), Ripper (Horror & Thriller).

oth EMCDR and PTUPCDR consider all these items together with a
ommon bridge or a personalized bridge to transfer the user preference.
owever, we can see that the first, second and fourth items in Fig. 11
 g
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Table 4
Training and inference time cost per epoch with 𝛽 = 20%.

Methods Task1 Task2 Task3

Train Inference Train Inference Train Inference

PTUPCDR 13.47 s 0.75 s 23.04 s 1.57 s 11.39 s 0.85 s
CVPM 36.98 s 1.40 s 68.12 s 2.22 s 33.10 s 1.09 s
MIMNet 34.44 s 1.37 s 58.10 s 2.27 s 29.64 s 1.14 s

indicate an interest in Healthy, while the remaining two items relate
to an interest in Thriller. Therefore, it is more reasonable to transfer
user preference separately as conducted in MIMNet, which utilizes a
multi-interest bridge to transfer user diverse interests effectively.

5.3.8. Performance distribution analysis
In this section, we investigate the performance of our proposed

odel with respect to various ratings on the Amazon dataset by group-
ing the test set into different categories based on their rating labels.
The experimental results are shown in Fig. 12. We can observe that
all methods generally achieve better performance on a higher rating.
The performance differences under different ratings is probably due
to the skewed data distribution where data with higher ratings takes
relatively higher proportion in this dataset. Furthermore, our proposed

odel yields the best performance across all ratings, validating the
ffectiveness of our model.

5.3.9. Model training and inference efficiency study
In this section, we compare the training and inference efficiency

of MIMNet with two competitive baseline models (i.e., PTUPCDR and
CVPM) on a server equipped with an Intel(R) Xeon(R) Gold 6354 CPU
nd an NVIDIA A100 GPU. Table 4 shows the training and inference

time cost per epoch with 𝛽 = 20%. Specifically, PTUPCDR demon-
strates the best training and inference efficiency as it models user
references solely based on attention mechanisms. The computational
costs of our proposed model is inferior to that of PTUPCDR since we
need to conduct multiple iterations of capsule networks to decouple
different user interests. In contrast, CVPM presents the highest com-
putational costs as it has to model both personalized and common
mappings. The results indicate that the computational complexity of
our proposed model is moderate and can be implemented in large-scale
systems.

6. Conclusion

This paper introduces MIMNet, a novel framework for solving the
cold-start problem in cross-domain recommendation. To be specific, we
propose a novel multi-interest meta network by utilizing dynamic rout-
ng mechanism to obtain users’ multiple interests, and generating multi-

interest bridges to transfer user embeddings from the source domain to
the target domain. Moreover, we develop a multi-granularity target-
guided attention network via exploring both fine-grained and coarse-

rained target signal as a guidance of learning better transformed user
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Fig. 10. Convergence analysis of our proposed model MIMNet and the other three baselines with 𝛽 = 20%, in terms of MAE.
Fig. 11. Case study for the Task2.
Fig. 12. Performance distribution analysis of our proposed model MIMNet with 𝛽 = 20%, in terms of MAE.
representation in the target domain. Extensive experiments on three
CDR tasks demonstrate that our proposed method can considerably
outperform state-of-the-art baselines in cross-domain recommendation.
Further studies verify the effectiveness of the compatibility and robust-
ness of our model as well as the importance of each model component.
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